The ins and outs of problem statements

In this document we answer the following three questions:

1. What is a problem statement, and what’s it good for?

2. What exactly does a problem statement look like?

3. What’s a good process, for deriving a problem statement which will prove valuable to us during development?

We believe that the creation of problem statements is crucial to the success of any project which has sufficient technical or organizational complexity. You will have several opportunities to create and evaluate problem statements, in CSSE 371 (Requirements Engineering) and also in CSSE 374 (Software Architecture). Usually, both requirements engineers and also architects are involved in the creation of problem statements.

1. What is a problem statement?

a. Short and to the point: A 1 – 3 page statement which everyone on an engineering project agrees with, saying, “This is what we are doing.” By “everyone,” we mean official project stakeholders, developers, and everyone else who should have some say-so in the project’s outcome.

b. A translation: The problem statement translates the business case point of view of marketing people into the terminology and form used by the technical team who will develop a system, as a solution to a problem or need by paying customers. The problem statement will help those in business oriented non-technical jobs communicate effectively with the technical communities that support them, and help the technical communities understand, prioritize and delineate among needs, differentiators and wish-lists. It will also improve decision making speed and reduce rework resulting from a misunderstanding of the underlying reasons for what is requested by the product management team. These are all reasons why it’s worthwhile to do this problem statement!

c. Stays away from solving the problem: The problem statement says, “What has to be done” for a development project to succeed – to meet the needs of its stakeholders who are external to the development. It does not say, “How that has to be done,” unless those external stakeholders say so. This makes the problem statement become a tool for the development team to envision architectural and technology choices. Specifically, the problem statement matches an architectural document created by the architects for the project – that architecture document which follows will then say, point by point, how the proposed overall system design will meet the needs described in the problem statement. Since both the problem statement and architectural document are fairly short, they have an “impedance match” which enables the architectural document to convince stakeholders of the viability of the proposed technical solution.

d. Something done separately: It is not a part of a larger requirements document, because it is a more conceptual document and is intended for a very wide audience. Also, the problem statement usually needs to be done first, so that the requirements reflect the concepts described in the problem statement. Thus, the problem statement does not fit in with the schedule of creation and organizational approvals for the related, thick requirements document.

e. More than just the “short list” of requirements: Furthermore, this is not just a consolidation of detailed requirements. The problem statement must say, for example, which really are the key requirements, and which ones are less important, something a requirements document may not say at all. And the problem statement explains why those are important to the success of the stakeholders.

f. Serves a crucial role in software project success: In other words, the problem statement is a format or tool for the stakeholders and developers to communicate in concise, plain language, about what tasks are being paid for, and what must be accomplished conceptually for the project to be a success. It is something everyone involved can tape on their office wall and know, “When we have done this, we made it!” Notice in the template for the problem statement, below, there is a place for stakeholders to sign-off on this document. This is very important! The problem statement forces all parties involved (including the development team’s leaders), to reach a conceptual agreement about what they are doing, and sign their names to this agreement!

2. What exactly does a problem statement look like?

Below is one sample in a format akin to what’s described above, with explanatory comments after each section:

Problem Statement for Digital Meetings Pro

Team X: Aaron K, Peter F, Ross M, Paisley M

Revision History

	Date
	Version
	Description
	Edited by

	October 25, 2004
	1.0
	Initial Draft
	

	November 4, 2004
	1.1
	After meeting Draft
	

	November 6, 2004
	1.2
	After receiving input from client draft
	

	November 7, 2004
	1.3
	Integration of last Milestone
	

1. High Level Problem Summary

Software should provide users with an online environment within which they can hold meetings, transfer files, and discuss current issues pertaining to the workplace. System should be independent of user location, and allow users from around the world to hold meetings. Anything that Digital Meetings Pro will not do out of the box, there will be a simple API in which plugin’s can be easily made.
[This summary answers the question “How we will know when we’ve succeeded?” Optionally – one can include a “scope” statement here as well, especially to rule out what the system is not supposed to achieve. In this case, for example, the system is not supposed to recreate instant messaging!]
2. Detailed Problem Statement

2.1 FUNCTION

· Display video of all users on system

· Display a presentation

· Display chat

· Display navigation of iterative levels

· Send and receive audio

· Send and receive Instant messages

· Send and/or receive video

· Send and receive files

· Accommodate as many users as need be

· Be secure

· Function as fast as the connection allows without a burden on other users

· Function on the XP operating system
[In its simplest form, we see here a bullet list of features, a list which grows and shrinks as the project progresses, but is never detailed – that’s done in requirements documents. The “Function – Form – Economy – Time” model is used here for describing the problem.
 The goal of the model is to show the requirements in 4 different dimensions which commonly have high value to stakeholders, especially to clients. The contents of each of the Function – Form – Economy – Time sections are almost self-descriptive. Consider, however, how often all we see is what amounts to an elaboration of features in software requirements. The F/F/E/T methodology is intended to provide a broader base for making design and business decisions about a project.]

2.2 FORM

Performance and Capacity

· The system should be stable, and be able to handle many users in a meeting at once
· The system should support up to 100 users per meeting
Reliability and availability

· The system should be available nearly all the time, with regularly held maintenance periods to test for system stability.
· Late users will logon like a usual user and they will be updated on what has gone on thus far in the meeting.

Usability

· Very simple interface that can be easily navigated by users new to the software.
Security

· Software should be running on a secure, LAN or VPN network.
· Users will have to provide a username and password before they can connect to the main server.

Modifiability, maintainability, and customizability

· System should require very little maintenance, and should run oin virtually any windows XP environment.
Testability

· The system will be developed in a development environment, separate from the testing and production environments to allow for regression and load testing to be performed.

· Test cases will be built from Uses Cases and Supplemental Specifications detail.
Hardware and Software Constraints

Must run in the windows XP operating system.
The client has stated that the Hardware system to target will be very specific.

Must incorporate an IM protocol that handles file transfers.

[The Form element of a problem statement describes the highest level content in terms of Len Bass’s Quality Attributes (non-functional requirements). It also includes other high-level elements which would impact the way a solution could be designed, as shown under the Constraints here.]
2.3 ECONOMY

Being a breakthrough program with many revolutionary features, this program must be priced so as to be attractive to skeptical managers. However, this program is rich in the number and diversity of its features, and developing and testing each of these is work (and therefore, cost) intensive.
[Including the Economy section forces the designers to consider the economics of each choice, and so also, we hope, to consider alternatives in the first place. By focusing attention on the general view of the economics from a very early stage of the project onward, the effort is more likely to be a business success. Usually, one would expect to see real numbers in this section.]

2.4 TIME

The program must be able be updated for newer and better protocols.

The amount of time the program will take to write will depend on the amount and difficulty of the desired features, as will the budget

The market window for this product will last until a competitive firm releases a similar product.

The IM version will also have to be updated with the software, to fix problems with it.

[The Time considerations are not primarily how long the project is supposed to take, although that is important. The key considerations are how the system will fit in with the past present and future of its various stakeholders (including users, developers, clients, etc.). This includes a view of what the system is replacing, the proposed lifecycle of the product, and the current market window.]

3. Key Stakeholder Sign-offs
	
	Chief Entrepreneur

	
	Computer Scientist

	
	Software Development

	
	Marketing

	
	Finance

	
	Project Leader

	
	User Interaction

	
	Technical Specification

	
	Manager

[The beauty of this section is supposed to be that further work does not proceed until such stakeholders sign-off that what’s shown in the Problem Statement is what they are doing. It ensures that common typical software development pitfalls are sidestepped. For example, the problem that the client pays insufficient attention to directing the start of the project, assuming that the developers all know what he or she wants them to do, when this is not the case. Or, the problem that the developers feel undeserved freedom to do whatever they want, and direct large amounts of effort toward features or other capabilities which none of the stakeholders really wants. The Problem Statement is supposed to remain a live document throughout the project, always showing at a conceptual level what is being done from the various perspectives of value.]

� This model is due to the US architectural firm CRSS (now part of HOK). See William Pena’s Problem Seeking: An Architectural Programming Primer, Third Edition. AIA Press, 1987, ISBN 0-913962-87-2.

1

